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Physical principles are used in formulating conditions for occurrence of acoustic 
and relaxation oscillations in a bed of granular material in the presence of 
localized gas injection. 

A common industrial technique is the use of a bed of granular material injected locally 
with a gas (Fig. i). The gas flows from a vessel i at a constant pressure via the nozzle 2 
into the bed, where a circulation zone 3 arises, which is relatively free from the granular 
material. The bed material 4 is displaced downwards by its weight, which is opposed by the 
mass-transfer processes in zone 3, where combustion, melting, evaporation, etc., may also 
occur. 

The dynamic processes in the gas system and bed are described on the assumption that 
the hydrodynamic system of Fig. 1 consists of components with lumped parameters -- mass, 
elastic, and dissipative. 

The motion over section 1--2 may be described by means of Euler's momentum theorem: 

~,l, dO, _ ( p , _  p.,) _ AP, ~, (I) 
si dT 

where the pressure loss over section 1-2 is 

AP,_~:: ~, . :--~ 0~; (2) 

and~ therefore, 

d r  ~ , , 

The acoustic mass of the injected flow is M~, = p,l,/s, in (3), 

(3) 

and this characterizes 

(4) 

the inertial features of this component. 

The gas is compressed in zone 3 (volume V3) in a reasonably adiabatic fashion, so 
!)• ; differentiation then gives 

•  d P  

p P 

The density change related to the change in gas speed in the bed can be expressed in 
terms of the difference between the volume flow rates Q2 and Q3 at the inlet and outlet of 
zone 3: 

d~ _ p ( Q 2 _ _ k ~ Q . O .  (5) 
dr V~ 

Section 1--2 has only inertial parameters, so Q~ = Q~(Q ffi idem), and substitution of (5) into 
(4) along with the equation of state P - ~pRgT gives 

V 3 d P ~  = Qi--kaQa, (6) 
pc 2 d'~ 

where c = ]/• is the speed of sound under the conditions of zone 3. 

Any change in the free volume V3 is dependent on the ratio between the rate of input of 
material to zone 3 and the rate of consumption by reaction: 
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av,  = k~Q, - k~e]/:(pg.  
d~ (7) 

Here it is assumed that the area through which the material enters the circulation zone 
is proportional to the square of the relevant linear dimension Rs, while the consumption of 
the granular material is proportional to the gas flow rate; the function f(P~) reflects the 
effects of the pressure Ps in the zone on the input of material. 

The gases pass through the layer surrounding the circulation zone and thereby influence 
the pressure in that zone, and the acoustic mass Mus of the gas passing through the material 
then acts as an inertial component: 

dz (8) 

The relationship be tween  V3 and the size parameter Rs is 

V 3 = k~R~,  (9) 

and then the dynamic equations can be combined as the system 

Mai dQld___~ ~ (PI -- P3) -- ( kl + k~f, ) Qi " 

C% dp3 - Q, --  k~Q3; 
d~ 

3keR~a dR3 _-_ k~Q~ -- ksR] f (P3); 
dx 

P3 = ~ (Q~) + Maa dQ3 
d'~ 

(to) 

The function q(Qs) reflects the pressure drop in the bed above the circulation zone 3, 
while the structure of the bed is dependent on the initial porosity, the particle packing 
conditions (themselves affected by the processing), the heat and mass transfer in zone 3 and 
in the bed, the amounts of gas passing through the bed, and various other factors. There 
are major difficulties in the theory of Jet flows in granular beds even if heat and mass 
transfer are neglected [i]. A good means of examining processes in such beds is to employ a 
model that reflects the microscopic or macroscopic parameters of the material that are of 
major importance for the particular purpose ~2-4]. 

In the present case, the bed is displaced downwards by gravitational forces into the 
circulation zone, while there are frictional forces on the wall of the apparatus and other 
~mmobile parts far from the circulation zone. The friction between the gas flow and the bed 
is in dynamic equilibri~n with the forces between the particles of granular material above 
the circulation zone. 

The following types of structure in the bed occur as Q3 varies: the close-packed bed 
opens_ _pu for Qs > ~s andD the granular structure becomes apparent; fluidizatlon sets in for 
Qs > Q=s; and for Q3 > Q ~ the particles are entrained by the gas flow and channels are pro- 
duced, in which the situation is similar to that of a gas suspension (Fig. 2). The circula- 
tion of the material in the case Q3 >Q A3 is accelerated because of the relatively free movement 
of the individual particles, while some of the particle cover may be disrupted under fluidiza- 
lion conditions (Q3 > QB ), and bubbles of gas may break through the bed. When this occurs, 
the flow rate then falls to Qs ~ ~3 and the bed reforms, so the elastic behavior of V3 allows 

z ~ g o  o ~ o  

Fig. i. Process scheme. 
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Fig. 3 

The function f(Ps) for y = 16.0, ~ = 3.0, 

the latter to take up the excess potential energy as increased pressure, which is again dis- 
sipated in the escape of batches of gas. The area enclosed by the curve ABDA represents the 
energy required to open up the bed, while part of this energy is consumed when the bed re- 
laxes and accelerates the gas. 

Equation (7) contains f(Ps), which reflects the mode of entry of the material into zone 
3 as the pressure varies; this can be represented as an incomplete cubic polynomial in dPs/dT: 

/(P3)= ? dT ] t dT . 

where y, u ,  and I are parameters of f(Ps) (Fig. 3); dPs/dT = 0 in the state of steady flow, 
and when f(Ps) = I = const, while for dPs/dT > 0 there is a lower rate of entry of material 
into zone 3, so Vs increases, whereas the converse applies for dPs/dT < 0. 

Therefore, the inertial, elastic, and dissipative components can give rise to periodic 
modes during isothermal infiltration, which involve changes in the bed structure and fluctua- 
tions in the gas flow rate. If in addition the material is wetted by a liquid, the fluidiza- 
tion region becomes wider [5], and the peak on the ~(Qs) curve becomes larger (AB'D' in Fig. 
2). Production of heat in the bed tends to increase the resistance and favors these oscil- 
latory states. The sequence of sections showing faster and slower motion constitutes a form 
of relaxation oscillation associated with structure change. 

System (i0) describes the periodic processes of relaxation type together with the 
higher-frequency acoustic oscillations; the analysis may be simplified in the following two 
limiting cases: 

i. For Me, = 0, Mas = 0 

(PI--P3)---- ( k l - -  k2 " Q~; 

Ca3 dP3 - QI- -  k3Q3; 
dT 

k~ Ql dR3 2 , k~ 
- -  - G T f ( & ) ,  
3k 6 d~ 3k 6 

G = ~ (G) .  

(12) 

2. For Ra = const 

ko 1 ~ Mal dQl~ - ( P t - -  P3) - -  ki ~ R3 , Qi ; 

Ca3 dP3 - Ql - -  k3Q3; 
d~ 

(13) 

dQ~ 
P3=~(G) M a s - -  

dT 
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Linearization is facilitated by replacing the equations in (12) and (13) by equations 
in variations; then (12) and (13) take the same form for the steady state: 

P i - - P 3 , o =  kt ' " Ql.o, Q~.o=k3Q3o: 
R3.o (14) 

kiQLo ::  k~R~.o f (P~,o); P~.o = ~(Q~.o). 

The following is the linearized form for the differential equation for the low-fre- 
quency relaxation oscillations: 

k~-Q-l,c 2k'~Qt,o 2ktQt,o Q - -  P :=- 0; Ca3 dP _ Q__ k3q; 
Rz,o P" - -  R3.o dx (15) 

3k6R~, ~ dRd.r = k~Q '-- r 2~,k~R3.oR, P = [$q. 

Here 8 = d~(Qs,o)/dq is the coefficient to the second term in the expansion of ~(Qs,o + q) 
as a Taylor series: 

d~ (Q3,o) 
(Q3.o + q) = ~ (O3.o) + q -- P3,o + Pq. dq (16) 

gives us a second-order equation for the fluctuations in A series of operations in (15) 
the gas flow rate: 

where 

d2Q dQ 
dx---- F + ai ~ + azO =0,  (17) 

3keR~. o + c~kskzQ~, o 22.k~ k3 

a, = 6Cask,R3.oQ,.o (kz + R3.ok0 3ksR3.o ' f~C% 
k._.k~ Q,.o . (18) 

6keR], o (k.~ + R3,oki) ' 

a2 = 2~Ca~O,. ~ 1-- + 6~Ca] R,.o (k.2 + R3.ok,) § 

+ 2~.k3k~ + ~k5 __ k.zk3k~Ql, o 
3Ca3R3,ok,~ 3C%ksQ,,o (~  - R3,okt) 6CaskeR].o~(kz + R3,okl) �9 

The linearized system for the high-frequency acoustic oscillations is 

P = - -  Mal dQ 2 (/~, + R3 ok,) Q,.o 
de n--S-o Q; 

Ca3 -dx = Q - - / ~ q ;  P = M %  + 13q 

(19) 

(20) 

and this gives us the thlrd-order equation 

d3Q h dZO d Q  
b, ~ + ~ Z - - d x  z + b~ ~ + b4O = 0 ,  

w h e r e  

(21) 

1 
bt = Ca3Ma,Mas; 

ks 

bz -- 2Ql.o C%Ma 3 (k z + R3,okt ) + C%,Wat ~; 
k~R3,o k3 

b 3 = Mat+  2Qi'~ (kz -'?, Q3,okt) 13; 
R3.o~3 

b ~ =  13 , 2Qi,o ' R3ok0 k--?-i- (k~_ , . 
e3, o 

(22) 

(23) 

(24) 

(25) 
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The stability of the system of Fig. i with respect to relaxation and acoustic oscilla- 
tions is governed by the magnitudes and signs of the coefficients in (17) and (21), which 
themselves are dependent on the coefficients K i in (i0), along with the acoustic masses Max, 
M~s and the acoustic capacitance Cas. The quantities Qx,o and R3,@ determine the type of 
mode for which the stability conditions have to be solved. Here B is the slope of the ff(Qs) 
curve at the working point, and for Q3 < QBs we have B > 0, while for Qs > QBs we have 8 < 0. 

Linearization of (12) and (13) is equivalent to assuming that the oscillations are 
harmonic; this is clearly so for the acoustic oscillations, whereas a harmonic form is only 
a first approximation for the relaxation oscillations. 

The solution to (17), 

Q (0 = N cos @ j  - -  ~) exp ( - -  6T) (26)  

serves to define the stability conditions for the hydrodynamic process in the presence of 
random low-frequency perturbations. The usual situation is 

kzk~Q~.o 2~k5 
6ksR~.o(k2 + Re,ok0 ' - -3~Ra . , ,  ~ 0, (27)  

so low-frequency perturbations are damped if 

6ksksRa,oQl.o(k2 + Rs,ok,) (28)  
> ak, R~.o + akzksQ~.o 

Therefore, the AB hranch of the ~(Qs) characteristic is the region of stable working 
states. Flow rates Qs > QBs transfer the working point to the descending branch BD of ~(Qs) 
and when 

< - -  6~k6Ra.oQ~,o ( ~  + Rs,ok,) 
3keR~. o T akzksQ~, o (29) 

the system shows persistent oscillations having the initial frequency ua = 0.5~2 -- aaa, 
which goes over asymptotically to the natural frequency ~ = ar The initial conditions 
representing the induced perturbation, viz., Q(0) = Qin and dQ(0)/dr = Qin', determine the 
amplitude of the oscillations 

NZ = Q~ + (0'SaiQin'~" Qin)Z (30)  
m a~ - -  (0 ,SaO z 

and the phase: 

~ Oi. 
cp = a r c t g  [ a , -  (0 .5a0z l  Qtn" ( 3 1 )  

Therefore, the value of B given by (28) is to be taken as defining the stability limit 
to the flow of gas through the bed for given values of ki, Rs,o, Qx,@. 

The stability of the system of Fig. I with respect to acoustic oscillations is defined 
by the Hurwitz criterion, viz., positive values for h i > 0 and for the differences (b2bs -- 
hxb~) > 0. The relationship between the h i and the sign-variable constant 8 is such that 
acoustic oscillations are damped for 13 > 0, whereas perturbations caused by relaxation ef- 
fects maintain the acoustic oscillations for 13 < 0. 

The solution to (21) is the sum of eigenvaluest 

Q(x)=Clexp(2~,r) -- C~exp[ -(r +Caexp[__(cr + i(o)r]=Ctexp(2o.~)+ Dcos(o)x + a  )exp(o,r) ' (32)  

where o and to govern the aperiodic and harmonic components in the solution of (32), and 
these are related to solutions Yx -- 20, ya,s = --o + i~ to the incomplete characteristic equa- 
tion 

ya + ( ba b~ 
bt 3b~ ) 

while the constants 

C, = [(y, - -  y~) (y~ - -  y~ ) l - ' ;  

Ca = I(Ya - -  Yt) (Ya - -  Y=)I- '  

g + 2 ( ba '~ a b2ba , b~ 
\ 3bt / - -  3b~ r b-7-= O, (33)  

C2 = [(Y2 - -  Yt) (Yz - -  Y3)]-1 = 0.5D exp (iCqn); 

= 0.5 D exp ( - -  ictln) 
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are determined by the initial conditions. 

The analysis of the acoustic oscillations can be simplified substantially by consider- 
ing an approx~m-te hydrodynamic model! we pu t ~s = 0, as this quantity is usually less 
than Mut by two orders of magnitude, and then (21) gives 

dC ~ + ' Qt.o q- " ' Ot,o + - -  Q = 0. (34) 
-- R 3,oMa, ~ R.~,oMa,Ca3~ MalCa3 

The s o l u t i o n  to  (34) g i v e s  t he  n a t u r a l  f r e q u e n c y  as  

[ / , / I v /  21~ (k.z + R3.ok,) 
o = MalCa~ I-~ R3,o~ Ql,o, (35) 

where the  f i r s t  c o f a c t o r  in  (35) i s  t he  f r e q u e n c y  o f  the  Helmhol tz  r e s o n a t o r  f o r  Ot "- Os: 

/" 2 " n /  Sl % = 1 /  slp3c~ [/ r - -  
i ~  ptltV3 -- c~ llV3 , (36) 

and the second cofactor incorporates the interaction between the gas flow and the discrete 
structure around Vs. 

Therefore, frequency analysis based on (26) and (32) allows one to relate the periodic 
acoustic oscillations and the relaxation oscillations in the granular bed to the variations 
in the gas flow rate. 

NOTATION 

P, pressure; Q, gas flow rate; v, R, volume and radius of cavity; l, s, length and 
cross section of element; N~z - p~/s, acoustic mass of gas flow; Ca - V/pc a, acoustic capacit- 
ance of V; kl, coefficients defined in (1)-(9); a i, bi, coefficients in (17), (21); 7, a, I, 
parameters defined in (ii); ~, slope at the working point; ~, circular frequency; 6, damp- 
ing factor; o, aperlodicity parameter in (32); T, time; p, • c, density, adiabatic index, 
and speed of sound in gas. Subscripts (except for a i and b i) i, 2, 3 correspond to the points 
in Fig. i; subscript 0 represents the steady state; superscripts A, B, and D represent work- 
ing points in Fig. 2. 
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